Page 1 of 1

Masura unghiului <EMF intr-un triunghi ABC.

Posted: Wed Feb 24, 2010 12:33 am
by Virgil Nicula
Fie triunghiul \( ABC \) cu ortocentru \( H \) . Notam \( E\in BH\cap AC \) , \( F\in CH\cap AB \)

si mijlocul \( M \) al laturii \( [BC] \) . Sa se arate ca \( m(\angle EMF)=\left|180^{\circ}-2A\right| \) .

Posted: Wed Feb 24, 2010 4:32 pm
by Claudiu Mindrila
Modificare.

Analizam 3 situatii:
\( 1.\ \widehat{A}=90^{\circ}\Longrightarrow\widehat{EMF}=0^{\circ} \)
\( 2.\ \widehat{A}<90^{\circ}\Longrightarrow MF=MB=MC=ME\Longrightarrow\widehat{FMB}=180^{\circ}-2B,\ \widehat{EMC}=180^{\circ}-2C\Longrightarrow\widehat{FME}=180^{\circ}-2A \)

\( 3.\ \widehat{A}>90^{\circ} \) . In patrulaterul \( MEHF \) avem \( \widehat{EMF}+\widehat{EHF}=2\cdot90^{\circ}+\widehat{MEA}+\widehat{MFA}=180^{\circ}+90^{\circ}-\widehat{B}+90^{\circ}-\widehat{C}=180^{\circ}+\widehat{A} \), caci \( ME=MF=MB=MC \)
Apoi, deoarece patrulaterul \( AEHF \) e inscriptibil obtinem ca \( \widehat{EHF}+\widehat{EAF}=180^{\circ}\Longrightarrow\widehat{EHF}=180^{\circ}-\widehat{A} \). De aici rezulta cerinta problemei.

Posted: Wed Feb 24, 2010 4:43 pm
by Virgil Nicula
@ Claudiu Mandrila. Acolo apare un modul. Deci sunt cel putin doua cazuri !

Posted: Wed Feb 24, 2010 6:01 pm
by Virgil Nicula
Vad ca ai adaugat niste cazuri. Dar nu este destul, mai sunt cazuri, de exemplu daca \( B \) sau \( C \) este obtuz :D

Posted: Wed Feb 24, 2010 8:26 pm
by Claudiu Mindrila
Sa presupunem ca \( \widehat{B}>90^{\circ}. \). Se vede usor ca \( \widehat{FCA}=90^{\circ}-\widehat{A} \). Acum deoarece \( MF=ME=MB=MC \) deducem ca patrulaterul \( BECF \) e inscriptibil intr-un cerc de centru \( M \), deci \( \widehat{FME}=2\cdot\widehat{FCE}=180^{\circ}-2\widehat{A} \).