Page 1 of 1
Inegalitate simpluta, 2
Posted: Thu Feb 04, 2010 6:43 pm
by Claudiu Mindrila
Fie \( a, \ b, \ c>0 \) cu \( a^2+b^2+c^2=1 \). Sa se arate ca \( abc\left(a+b+c\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right) \le 1 \).
Cristinel Mortici
Posted: Thu Feb 04, 2010 8:03 pm
by Mateescu Constantin
Folosind succesiv inegalitatea \( x^2+y^2+z^2\ge xy+yz+zx \) obtinem :
\( a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge abc(a+b+c) \)
Asadar, \( LHS\le a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=(a^2+b^2+c^2)^2=1 \) .