Page 1 of 1

Inegalitatea 4, cu radicali

Posted: Mon Nov 05, 2007 2:01 am
by Cezar Lupu
Fie \( a, b, c \) trei numere reale strict pozitive astfel incat \( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\sqrt{abc} \). Sa se arate ca \( abc\geq\sqrt{3(a+b+c)} \).

Cezar Lupu, R.M.I. C-ta, 2004

Posted: Tue Nov 06, 2007 9:50 pm
by Filip Chindea
One-line solution, folosind binecunoscuta \( ab+bc+ca \ge \sqrt{3abc(a+b+c)} \):
\( \sqrt{abc} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ab + bc + ca}{abc} \Rightarrow abc = \frac{ab + bc + ca}{\sqrt{abc}} \ge \frac{\sqrt{3abc(a+b+c)}}{\sqrt{abc}} = \sqrt{3(a+b+c)} \).