Page 1 of 1

Progresii

Posted: Wed Jan 27, 2010 7:44 pm
by Adriana Nistor
Sa se demonstreze ca elementele multimii \( \{a,b,c\} \) sunt in progresie aritmetica, daca si numai daca este satisfacuta relatia:
\( a^2(b+c)+b^2(c+a)+c^2(a+b)=\frac{2}{9}(a+b+c)^2 \)

Posted: Wed Jan 27, 2010 9:58 pm
by Mateescu Constantin
Corect e asa : \( a^2(b+c)+b^2(c+a)+c^2(a+b)=\frac{2}{9}(a+b+c)^3\ \Longleftrightarrow\ \) elementele multimii \( \{a,b,c\} \) sunt in progresie aritmetica.

Relatia este echivalenta cu : \( 2a^3+2b^3+2c^3+12abc=3(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b) \)

\( \Longleftrightarrow\ (a+b-2c)(b+c-2a)(c+a-2b)=0 \), deci concluzia rezulta cu usurinta.