Functie definita pe A
Posted: Wed Jan 20, 2010 10:48 pm
Fie \( A\subset \mathbb{C} \) si \( f:A\rightarrow A \) o functie. Definim \( f_1=f \) si \( f_{k+1}=f_k\circ f,\ (\forall)k \in \mathbb{N}^* \). Stiind ca \( (\exists) \alpha,\ \beta>0 \) cu \( \alpha+\beta =1 \) si \( m,\ n\in \mathbb{N}^* \) prime intre ele astfel incat \( \alpha f_m(x)+\beta f_n(x)=x,\ (\forall)x\in A \), sa se determine toate functiile \( f \) in fiecare din urmatoarele cazuri:
i) \( A=\mathbb{N} \).
ii) \( (\exists)a\in \mathbb{C}^*,\ p\in \mathbb{N}^* \) astfel incat \( A=\{z\in \mathbb{C}\ |\ z^p=a\}. \)
i) \( A=\mathbb{N} \).
ii) \( (\exists)a\in \mathbb{C}^*,\ p\in \mathbb{N}^* \) astfel incat \( A=\{z\in \mathbb{C}\ |\ z^p=a\}. \)