O functie strict crescatoare

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O functie strict crescatoare

Post by Claudiu Mindrila »

Sa se detemine functiile strict crescatoare \( f:\ \,\mathbb{R}\longrightarrow\mathbb{R} \) pentru care \( f\left(x+f\left(y\right)\right)=f\left(x+y\right)+1,\ \forall x,\ y\in\mathbb{R} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Conditia de monotonie poate fi inlocuita cu injectivitatea.

Se obtine \( f(x)=x+1 \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Solutie. Avem \( f\left(x+f\left(y\right)\right)=f\left(y+f\left(x\right)\right)=f\left(x+y\right)+1\Longrightarrow x+f\left(y\right)=y+f\left(x\right)\Longrightarrow f\left(x\right)-x=f\left(y\right)-y=k\Longrightarrow f\left(x\right)=x+k \). Inlocuind in relatia data obtinem \( k=1 \Longrightarrow f(x)=x+1 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a IX-a”