Page 1 of 1

Ecuatie exponentiala si radicali

Posted: Mon Nov 05, 2007 1:07 am
by Cezar Lupu
Sa se rezolve ecuatia:

\( x\cdot 2^{x-1}+\frac{1}{\sqrt{x}}\cdot 2^{\frac{1}{\sqrt{x}}=3, x>0 \).


Cezar Lupu, I.V. Maftei, R.M.I. C-ta 2005

Posted: Mon Nov 05, 2007 7:51 pm
by Wizzy
Din inegalitatea lui Cebisev avem ca :
\( x2^{x-1}+\frac{1}{\sqrt x}2^{\frac{1}{\sqrt x}}=x2^{x-1}+\frac{1}{ \sqrt x}2^{\frac{1}{\sqrt x}-1}+\frac{1}{ \sqrt x}2^{\frac{1}{\sqrt x} -1}\geq \) \( \geq \frac{1}{3} \left( x+\frac{1}{ \sqrt x }+\frac{1}{ \sqrt x } \right) \left( 2^{x-1}+2^{\frac{1}{ \sqrt x}-1}+2^{\frac{1}{ \sqrt x}-1} \right) \)

Din \( x+\frac{1}{ \sqrt x }+\frac{1}{ \sqrt x }\geq 3 \) (medii) si \( 2^{x-1}+2^{\frac{1}{ \sqrt x}-1}+2^{\frac{1}{ \sqrt x}-1} \geq 3 \sqrt[3]{2^{x+\frac{1}{\sqrt x}+\frac{1}{\sqrt x}-3}}\geq 3 \) obtinem ca \( x2^{x-1}+\frac{1}{\sqrt x}2^{\frac{1}{\sqrt x}}\geq 3 \)

Cum avem egalitate in inegalitate avem ca \( x=1 \) este unica solutie, cum \( x=1 \)este conditia de egalitate