Inegalitate conditionata cu suma de patrate (2)
Posted: Tue Dec 22, 2009 6:11 pm
Daca \( n\ge 4 \) esta natural si \( a_1,a_2,...,a_n \) pozitive, astfel incat \( a_1^2+a_2^2+...+a_n^2=1 \), atunci
a) \( \frac{1}{4}\ge a_1^2a_2^2+a_2^2a_3^2+...+a_{n-1}^2a_n^2+a_n^2a_1^2 \)
b) \( \frac{a_1}{a_2^2+1}+\frac{a_2}{a_3^2+1}+...+\frac{a_n}{a_1^2+1}\ge\frac{4}{5}(a_1\sqrt{a_1}+a_2\sqrt{a_2}+...+a_n\sqrt{a_n})^2
\)
a) \( \frac{1}{4}\ge a_1^2a_2^2+a_2^2a_3^2+...+a_{n-1}^2a_n^2+a_n^2a_1^2 \)
b) \( \frac{a_1}{a_2^2+1}+\frac{a_2}{a_3^2+1}+...+\frac{a_n}{a_1^2+1}\ge\frac{4}{5}(a_1\sqrt{a_1}+a_2\sqrt{a_2}+...+a_n\sqrt{a_n})^2
\)