Concursul Matefbc editia a 2-a problema 3
Posted: Sun Dec 06, 2009 7:58 pm
Fie \( a, b, c \) trei numere naturale nenule astfel incat:
\( \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\geq \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a^2}{c+a}+ \frac{b^2}{a+b}+ \frac{c^2}{b+c} \)
Sa se arate ca \( a=b=c \).
\( \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\geq \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a^2}{c+a}+ \frac{b^2}{a+b}+ \frac{c^2}{b+c} \)
Sa se arate ca \( a=b=c \).