Concursul "Nicolae Coculescu" 2009, problema 4
Posted: Tue Dec 01, 2009 6:46 pm
Fie \( f:\mathbb{R}\rightarrow\mathbb{R} \) o functie cu proprietatea
\( f(x^3+y^3)+f(x^3-y^3)=2x\(f^2(x)+f^2(y)\)-2yf(x)f(y) \).
Sa se arate ca daca multimea \( A=\{x\in\mathbb{R}|f(x)=0\} \) este finita, atunci \( \forall x\in\mathbb{R} \) exista \( a,b\in\mathbb{Q} \) cu \( |b-a|\le\frac{1}{2} \) astfel incat \( f(a)<x<f(b) \).
Marius Perianu
\( f(x^3+y^3)+f(x^3-y^3)=2x\(f^2(x)+f^2(y)\)-2yf(x)f(y) \).
Sa se arate ca daca multimea \( A=\{x\in\mathbb{R}|f(x)=0\} \) este finita, atunci \( \forall x\in\mathbb{R} \) exista \( a,b\in\mathbb{Q} \) cu \( |b-a|\le\frac{1}{2} \) astfel incat \( f(a)<x<f(b) \).
Marius Perianu