Concursul Nicolae Coculescu editia 2009 subiectul I
Posted: Fri Nov 27, 2009 11:54 pm
Fie \( SABC \) un tetraedru echifacial (fetele sunt triunghiuri congruente). In triunghiurile \( SAB, SBC \), respectiv \( SCA \), construim bisectoarele \( AD, BE, CF \), cu \( D\in (SB), E\in (SC), F\in (SA) \), si \( DM\parallel AB, EN\parallel BC, FP\parallel CA \), unde \( M\in (SA), N\in (SB) \) si \( P\in (SC) \). Sa se arate ca:
\( 2(MD+NE+PF)\leq AB+BC+CA \).
Costel Anghel
\( 2(MD+NE+PF)\leq AB+BC+CA \).
Costel Anghel