Page 1 of 1

Inegalitate in triunghi din gazeta matematica

Posted: Sun Sep 27, 2009 1:35 pm
by opincariumihai
Aratati ca in orice triunghi are loc inegalitatea :
\( \sum \frac{1}{a+b-c} \geq \frac{ \sqrt3}{2r}. \)

Mihai Opincariu, G.M.B. 10/2000

Posted: Sun Sep 27, 2009 6:38 pm
by Marius Mainea
Se reduce la \( \sum\tan\frac{A}{2}\ge \sqrt{3}. \)

Posted: Mon Sep 28, 2009 8:37 am
by Cezar Lupu
Inegalitatea de mai sus este echivalenta dupa cateva calcule cu inegalitatea Finsler-Hadwiger, i.e.

\( a^2+b^2+c^2\geq 4S\sqrt{3}+(a-b)^2+(b-c)^2+(c-a)^2. \)