Inegalitate cu numere complexe
Posted: Sat Sep 26, 2009 12:03 pm
Sa se arate, pentru oricare \( z_1 \) , \( z_2 \) , \( z_3\in\mathbb{C} \), are loc inegalitatea:
\( \fbox{\ |z_1|^2+|z_2|^2+|z_3|^2\ \ge\ \mathrm{Re}(\overline{z_1}\cdot z_2)+\mathrm{Re}(\overline{z_2}\cdot z_3)+\mathrm{Re}(\overline{z_3}\cdot z_1)+\frac 16(|z_1-z_2|+|z_2-z_3|+|z_3-z_1|)^2\ } \) .
\( \fbox{\ |z_1|^2+|z_2|^2+|z_3|^2\ \ge\ \mathrm{Re}(\overline{z_1}\cdot z_2)+\mathrm{Re}(\overline{z_2}\cdot z_3)+\mathrm{Re}(\overline{z_3}\cdot z_1)+\frac 16(|z_1-z_2|+|z_2-z_3|+|z_3-z_1|)^2\ } \) .