Page 1 of 1

Grigore Moisil 2005-Integrale si puteri

Posted: Sat Sep 19, 2009 9:10 pm
by Theodor Munteanu
Determinati functiile continue \( f:[1,\infty ) \to R \) cu proprietatea ca \(
\int\limits_1^x {f(t)dt = \int\limits_{x^k }^{x^{k + 1} } {f(t)dt,\forall k \in N,\forall x \in [1,\infty )} } \)

Posted: Sat Sep 19, 2009 9:38 pm
by Marius Mainea
Se ia k=1, se deriveaza, se obtine \( f(x)=xf(x^2) \) si apoi \( f(x)=\frac{f(0)}{x} \).

Posted: Sun Sep 20, 2009 7:37 pm
by Theodor Munteanu
Simplu si eficient.

Acum \( f(x) = xf(x^2 ) \). Notam \( g(x) = xf(x) \) si obtinem \( g(x^2 ) = g(x) \Rightarrow g(x) = g(\sqrt[{2^n }]{x}) \Rightarrow g(x) = g(1) = f(1) = a. \)
Deci \( f(x) = \frac{a}{x} \) si de aici se mai demonstreaza ca \( a=0 \).

Posted: Sat Sep 26, 2009 10:18 am
by Laurentiu Tucaa
Theodor Munteanu wrote:si de aici se mai demonstreaza ca \( a=0 \).
\( a \) poate sa fie orice numar real, deoarece \( a\int_{1}^x \frac{1}{t} dt=a\int_{x^k}^{x^{k+1}} \frac{1}{t} dt <=> \ln x=\ln x^{k+1}-\ln x^k \) care este evident adevarata.