Page 1 of 1

Functie a-convexa

Posted: Sat Sep 12, 2009 9:52 am
by opincariumihai
Aratati ca o functie a-convexa si primitivabila este convexa.

\( f:I\rightarrow R,\ I \) interval nedegenerat, se numeste a-convexa daca \( a\in(0,1) \) si \( f((ax+(1-a)y)\leq af(x)+(1-a)f(y) , \forall x,y\in{I} \)

Posted: Sat Sep 19, 2009 10:48 am
by Marius Mainea
Notam \( a_n=2a_n(1-a_n) \) unde \( a_0=a \), \( n\in\mathbb{N} \)

Se arata foarte usor ca f este \( a_n \)- convexa iar \( a_n\to \frac{1}{2}\ (n\to\infty) \)

Apoi folosind solutia problemei de aici obtinem ca \( g_{a_n}(x) \) este crescatoare si apoi \( g_{\frac{1}{2}}(x) \) este crescatoare, deci f este \( \frac{1}{2} \)-convexa (sau semiconvexa).

De aici se aplica problema de mai sus.

Posted: Sat Sep 19, 2009 11:28 am
by opincariumihai
Daca folosim rezultatele problemelor de aici si aici obtinem imediat concluzia.