Page 1 of 1

Limita interesanta

Posted: Tue Aug 25, 2009 11:08 pm
by Francisc
Sa se determine limita sirului :
\( {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 0}^{n - 1} {\sqrt {\ln \left( {1 + \frac{1}{{n + k}}} \right)^n + 1} } \)

Posted: Wed Aug 26, 2009 1:05 pm
by Radu Titiu
Limita este egala cu \( \int_{0}^{1} \sqrt{\frac{1}{1+x}+1} \cdot dx \) si ca indiciu asupra metodei, se foloseste inegalitatea \( x-\frac{x^2}{2} \leq \ln(1+x) \leq x \).