Page 1 of 1
Inegalitate remarcabila in triunghi
Posted: Mon Aug 17, 2009 12:46 am
by opincariumihai
Aratati ca in orice triunghi are loc inegalitatea :
\( HG \geq IH \) .
Deduceti folosind aceasta inegalitate ca :
1.
\( OI \geq OG \) ( Balcaniada 96 ) ;
2. Inegalitatea propusa
aici .
Posted: Mon Aug 17, 2009 12:32 pm
by Mateescu Constantin
opincariumihai wrote:Aratati ca in orice triunghi are loc inegalitatea : \( HG \geq IH \) .
Folosim formulele:
\( \left\|\begin{array}{cc} HG^2 & = & 4R^2-\frac 49 (a^2+b^2+c^2) \\\\\\\
IH^2 & = & 4R(R+r)+3r^2-p^2 \end{array}\right\| \)
\( \Longrightarrow\ HG\ge IH\ \Longleftrightarrow\ 4R^2-\frac 49(a^2+b^2+c^2)\ \ge\ 4R(R+r)+3r^2-p^2 \)
\( \Longleftrightarrow\ 4R^2-\frac 49(2p^2-8Rr-2r^2)\ \ge\ 4R^2+4Rr+3r^2-p^2\ \Longleftrightarrow\ p^2\ \ge\ 19r^2+4Rr\ (*) \)
Pe de alta parte
\( GI^2=\frac{p^2+5r^2-16Rr}{9}\ \ge\ 0 \), deci
\( p^2\ \ge\ 16Rr-5r^2 \)
Ramane sa aratam ca
\( 16Rr-5r^2\ \ge\ 19r^2+4Rr\ \Longleftrightarrow\ R\ge 2r \), care este adevarata. Deci
\( (*) \) este indeplinita.
Posted: Mon Aug 17, 2009 12:48 pm
by Mateescu Constantin
opincariumihai wrote:
\( OI \geq OG \) (Balcaniada 1996)
Tinem cont de:
\( \left\|\begin{array}{cc} OI^2 & = & R^2-2Rr \\\\\\\\\\
OG^2 & = & R^2-\frac 19(a^2+b^2+c^2)\end{array}\right\| \) .
Astfel ramane sa demonstram ca:
\( a^2+b^2+c^2\ \ge\ 18Rr \) .
\( \Longleftrightarrow\ a^2+b^2+c^2\ \ge\ \frac{9abc}{a+b+c}\ \Longleftrightarrow\ (a+b+c)(a^2+b^2+c^2)\ \ge\ 9abc=3\sqrt[3]{abc}\ \cdot\ 3 \sqrt[3]{a^2b^2c^2} \) , evident.
Posted: Mon Aug 17, 2009 1:02 pm
by Mateescu Constantin
\( OI+OG\ \ge\ IH \)
Folosind inegalitatea
\( OI\ \ge\ OG \) ramane sa aratam numai ca
\( 2OG\ \ge\ IH\ \Longleftrightarrow\ HG\ \ge\ IH \), adevarat.