Page 1 of 1

Identitate conditionata (own !).

Posted: Tue Aug 11, 2009 8:34 pm
by Virgil Nicula
Sa se arate ca pentru orice \( \{b,c,d,x,y,z\}\subset\mathrm R \) exista implicatia

\( \left\|\ \begin{array}{c} (z + d)(b + c) = 2(bc + zd)\\\\\\\\
(b + d)(x + c) = 2(bd + xc)\\\\\\\\
(c + d)(y + b) = 2(cd + yb)\end{array}\ \right\|\ \Longrightarrow\ (z + d)(x + y) = 2(zd + xy) \)
.

Posted: Mon Aug 17, 2009 1:13 pm
by Mateescu Constantin
Din cele 3 relatii exprimam pe \( x,\ y \) si \( z \) in functie de \( b,\ c \) si \( d \):

\( x=\frac{2bd-c(b+d)}{b+d-2c},\ y=\frac{2cd-b(c+d)}{c+d-2b},\ z=\frac{2bc-d(b+c)}{b+c-2d} \) .