Page 1 of 1

x,y,z>0, x+y+z=1

Posted: Sat Aug 01, 2009 12:57 pm
by Claudiu Mindrila
Daca \( x, \ y, \ z>0 \) sunt a.i. \( x+y+z=1 \), atunci \( xy+yz+zx \ge 4 (x^2y^2+y^2z^2+z^2x^2)+5xyz \).

Posted: Sat Aug 01, 2009 1:45 pm
by Marius Mainea
Deconditionand inegalitatea este echivalenta cu

\( (\sum_{cyc} xy)\cdot(x+y+z)^2\ge 4\sum_{cyc} x^2y^2+5xyz(x+y+z) \) sau

\( \sum_{sym}x^3y\ge 2\sum_{cyc}x^2y^2 \) care este adevarata.