Olympiad Algebra Tournament
Posted: Thu Jul 02, 2009 11:24 pm
Fie \( a_1,a_2,...,a_n \) numere reale astfel incat \( 1 > {a_1} > {a_2} > {a_3} > ... > {a_n} > 0 \). Sa se demonstreze ca :
\( \frac {a^2_1}{1 - a_1} + \frac {a^2_2}{a_1 - a_2} + \frac {a^2_3}{a_2 - a_3} + ... + \frac {a^2_n}{a_{n - 1} - a_n} > \frac {1}{2}(a_1 + 2a_2 + 3a_3 + ... + na_n) - 1 \)
\( \frac {a^2_1}{1 - a_1} + \frac {a^2_2}{a_1 - a_2} + \frac {a^2_3}{a_2 - a_3} + ... + \frac {a^2_n}{a_{n - 1} - a_n} > \frac {1}{2}(a_1 + 2a_2 + 3a_3 + ... + na_n) - 1 \)