Inegalitatea Weizenbock
Posted: Tue Jun 16, 2009 3:51 pm
Inegalitatea Weizenbock intr-un triunghi oarecare ABC:
\( a^2 + b^2 + c^2 \ge 4S\sqrt 3 \)
Demonstratia 1:
\( \begin{array}{l}
\left. \begin{array}{l}
{\rm ctgA = }\frac{{{\rm cosA}}}{{{\rm sinA}}} = \frac{{\frac{{b^2 + c^2 - a^2 }}{{2bc}}}}{{\frac{a}{{2R}}}} = \frac{{R(b^2 + c^2 - a^2 )}}{{abc}} \Rightarrow ctgA + ctgB + ctgC = \frac{{a^2 + b^2 + c^2 }}{{4S}} \\
ctgA + ctgB + ctgC \ge \sqrt 3 \\
\end{array} \right| \Rightarrow a^2 + b^2 + c^2 \ge 4S\sqrt 3 \\
\end{array}
\)
Demonstratia 2:
Fie T punctul in care m(ATB)=m(BTC)=m(ATC)=120 si AT=x, BT=y, CT=z. Atunci
\( \begin{array}{l}
a^2 = y^2 + z^2 - 2yz\cos 120 = y^2 + z^2 + yz; \\
b^2 = z^2 + x^2 + xz; \\
c^2 = x^2 + y^2 + xy; \\
S = (BTC) + (CTA) + (ATB) = \frac{1}{2}yz\sin 120 + \frac{1}{2}zx\sin 120 + \frac{1}{2}xy\sin 120 = \frac{{\sqrt 3 }}{4}(xy + yz + zx) \Rightarrow 4S\sqrt 3 = 3(xy + yz + zx) \\ \end{array} \) de unde rezulta imediat concluzia.
Pentru demonstratia (2) vezi si cartea Inegalitati matematice (modele inovatoare).
\( a^2 + b^2 + c^2 \ge 4S\sqrt 3 \)
Demonstratia 1:
\( \begin{array}{l}
\left. \begin{array}{l}
{\rm ctgA = }\frac{{{\rm cosA}}}{{{\rm sinA}}} = \frac{{\frac{{b^2 + c^2 - a^2 }}{{2bc}}}}{{\frac{a}{{2R}}}} = \frac{{R(b^2 + c^2 - a^2 )}}{{abc}} \Rightarrow ctgA + ctgB + ctgC = \frac{{a^2 + b^2 + c^2 }}{{4S}} \\
ctgA + ctgB + ctgC \ge \sqrt 3 \\
\end{array} \right| \Rightarrow a^2 + b^2 + c^2 \ge 4S\sqrt 3 \\
\end{array}
\)
Demonstratia 2:
Fie T punctul in care m(ATB)=m(BTC)=m(ATC)=120 si AT=x, BT=y, CT=z. Atunci
\( \begin{array}{l}
a^2 = y^2 + z^2 - 2yz\cos 120 = y^2 + z^2 + yz; \\
b^2 = z^2 + x^2 + xz; \\
c^2 = x^2 + y^2 + xy; \\
S = (BTC) + (CTA) + (ATB) = \frac{1}{2}yz\sin 120 + \frac{1}{2}zx\sin 120 + \frac{1}{2}xy\sin 120 = \frac{{\sqrt 3 }}{4}(xy + yz + zx) \Rightarrow 4S\sqrt 3 = 3(xy + yz + zx) \\ \end{array} \) de unde rezulta imediat concluzia.
Pentru demonstratia (2) vezi si cartea Inegalitati matematice (modele inovatoare).