Page 1 of 1
Suma de radicali
Posted: Fri Jun 12, 2009 2:52 pm
by Andi Brojbeanu
Demonstrati ca \( \sqrt{n^2+1}+\sqrt {n^2+2}+.....+\sqrt{n^2+2n}<\frac{4n^2+2n+1}{2} \),pentru orice \( n\in N* \).
Lucian Tutescu, Craiova, Recreatii Matematice 1/2008
Posted: Sun Jun 28, 2009 3:45 pm
by Marius Mainea
Se foloseste AM-GM.
\( \sqrt{n^2+k}=n\sqrt{(1+\frac{k}{n^2})\cdot1}\le n\cdot\frac{1+\frac{k}{n^2}+1}{2}=n+\frac{k}{2n} \)
Posted: Mon Jun 29, 2009 6:28 pm
by Andi Brojbeanu
Demonstram ca \( \sqrt{n^2+k}<n+\frac{k}{2n} \). Ridicand la patrat, obtinem \( n^2+k<n^2+k+ \frac{k^2}{4n^2} \), adevarat.
Inlocuind in relatia diin cerinta, avem \( \sqrt{n^2+1}+\sqrt{n^2+2}+....+\sqrt{n^2+2n}<n+\frac{1}{2n}+n+\frac{2}{2n}+....+n+\frac{2n}{2n}=2n^2+\frac{\frac{2n\cdot(2n+1)}{2}}{2n}=\frac{4n^2+2n+1}{2} \), adica ceea ce trebuia demonstrat.