Page 1 of 1

O multime de numere reale

Posted: Sun May 24, 2009 7:33 pm
by alex2008
Fie \( M \) o multime de numere reale cu proprietatile:
1) \( 0\in M \);
2) \( x\in M\Rightarrow \sin x+\cos x\in M \);
3) \( \sin \ 2x+\cos \ 2x\in M\Rightarrow x\in M \).

Sa se arate ca:
a) \( \frac{3\pi}{4}\in M \);
b) M contine o infinitate de numere irationale subunitare.

Lucian Dragomir, RMT 2002

Posted: Thu Jan 21, 2010 11:07 pm
by Marius Mainea
a) \( 1=\sin 0+\cos 0 \in M \)

\( \sin 2\pi+\cos 2\pi=1\in M \) deci \( \pi\in M \)

\( -1=\sin \pi+\cos \pi \in M \)

\( -1=\sin\frac{3\pi}{2}+\cos\frac{3\pi}{2}\in M \) deci \( \frac{3\pi}{4}\in M \)

b) se arata prin inductie ca daca \( x\in M \) atunci \( \frac{x}{2^n}\in M (\forall) n\in\mathbb{N} \)