Page 1 of 1
Masura nula
Posted: Sun May 24, 2009 1:39 pm
by Cristi
Fie \( m \) masura Lebesgue pe \( \mathbb{R} \) si \( A\subset \mathbb{R} \) o multime masurabila Lebesgue. Aratati ca daca pentru orice \( a,b \in \mathbb{R}, a<b \) avem \( m(A\cap (a,b))<\frac{b-a}{2} \), atunci \( m(A)=0 \).
Admitere SNSB 2009
Posted: Wed Jul 08, 2009 4:04 pm
by Beniamin Bogosel
Fie \( k \in \mathbb{Z} \) si \( B=A\cap [k,k+1] \). Atunci \( m(B)\leq 1 \) si \( m(B\cap (a,b))\leq m(A\cap (a,b))<\frac{b-a}{2} \).
Din regularitatea masurii Lebesgue obtinem ca pentru orice \( \varepsilon >0 \) exista \( D \) o deschisa astfel incat \( B\subset D, m(D) < m(B)+\frac{\varepsilon}{2} \). Deoarece \( D=\bigcup (a_k,b_k) \) (reuniune disjuncta si cel mult numarabila) avem \( m(D)=\sum (b_k-a_k) \).
Pe de alta parte, \( m(B)=m(B\cap D)=\sum m(B\cap (a_k,b_k))\leq \sum \frac{b_k-a_k}{2} \).
Astfel \( m(D)=\sum (b_k-a_k) <\varepsilon \). Prin urmare \( m(B)\leq m(D)<\varepsilon \). Cum \( \varepsilon \) a fost ales arbitrar, obtinem \( m(B)=0 \).
Se deduce usor acum ca \( m(A)=0 \) ca reuniune numarabila de multimi de masura 0.