Page 1 of 1
Inegalitate conditionata
Posted: Sat May 23, 2009 5:38 pm
by opincariumihai
Daca \( a,b,c \) sunt pozitive si \( a+b+c=1 \), aratati ca \( \frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\geq\frac{1}{2} \)
Mihai Opincariu
Posted: Sat May 23, 2009 7:22 pm
by Marius Mainea
\( LHS=\sum a-\sum\frac{ab^2}{a^2+b^2}\ge RHS \) folosind AM-GM
P.S. Se poate arata ca :
\( \frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\ge\frac{a+b+c}{2} \)
Posted: Sat May 23, 2009 7:38 pm
by opincariumihai
Felicitari pt. rapiditatea cu care rezolvi pb.
Mai "smechereste" se redacteaza asa :
Demonstram ca \( \frac{a^3}{a^2+b^2}\geq\frac{2a-b}{2} \) si analoagele care insumate duc la concluzie.