Page 1 of 1

TST I 2009, Problema 1

Posted: Wed May 20, 2009 9:54 pm
by Laurian Filip
Pentru orice multimi nevide \( A,B \subseteq \mathbb{Z} \) definim \( A+B \) si \( A-B \) prin
\( A+B=\lbrace a+b | a\in \mathbb{A}, b \in \mathbb{B} \rbrace, \ A-B=\lbrace a-b | a\in \mathbb{A}, b\in\mathbb{B}\rbrace \).
In cele ce urmeaza vom considera numai multimi finite nevide din \( \mathbb{Z} \).
Demonstrati ca putem acoperi multimea \( B \) prin cel mult \( \frac{|A+B|}{|A|} \) translatate ale multimii \( A - A \), adica exista \( X \subseteq \mathbb{Z} \) cu \( |X| \leq \frac{|A+B|}{A} \) astfel incat
\( B \subseteq \bigcup_{x\in X} (x+ (A-A))=X+A-A \).