Page 1 of 1

Grupuri abeliene finite si patrate perfecte

Posted: Sun Oct 28, 2007 7:42 pm
by bae
Aratati ca pentru orice grup abelian finit \( G \) avem ca \( |End(G)|/|G| \) este patrat perfect.

(M. Andronache, I. Savu, GMA 1991)

Posted: Sun Oct 28, 2007 8:43 pm
by Dragos Fratila
Din teorema de structura a grupurilor abeliene finit generate rezulta ca
\( G\approx \mathbb{Z}_{d_1}\times\cdots\times\mathbb{Z}_{d_r} \) cu \( d_1|d_2|\ldots d_r \) si \( d_1d_2\cdots d_r=n=|G| \).

\( End(G) \) se identifica cu \( Hom_{\mathbb Z}(G,G) \), pt. ca \( G \) fiind abelian este un \( \mathbb{Z} \)-modul.

Din proprietatea de universalitate a produsului si sumei directe rezulta
\( Hom_{\mathbb{Z}}(\prod_{i=1}^r\mathbb{Z}_{d_i},\prod_{i=1}^r\mathbb{Z}_{d_i}) \approx \prod_{i,j}Hom_{\mathbb{Z}}(\mathbb{Z}_{d_i},\mathbb{Z}_{d_j}) \).

Se observa usor ca \( |Hom_{\mathbb{Z}}(\mathbb{Z}_{d_i},\mathbb{Z}_{d_j})|=\min(d_i,d_j) \)

Asadar
\( |End(G)|=\prod_{i,j}\min(d_i,d_j)=\prod_{1\le i\le j\le r}\min(d_i,d_j)\prod_{1\le j<i\le r}min(d_i,d_j)= \) \( \prod_{i=1}^rd_i^{r-i+1}\prod_{i=1}^{r-1}d_i^{r-i}
=d_r\prod_{i=1}^{r-1}d_i^{2(r-i)+1}=\left(\prod_{i=1}^{r-1}d_i^{r-i}\right)^2d_1d_2\cdots d_r \)
.
Cum \( |G|=d_1\cdots d_r \) rezulta concluzia.