Ecuatie functionala
Posted: Mon May 11, 2009 7:38 pm
Aratati ca exista o singura functie \( f\ :\ \mathbb{R}\rightarrow \mathbb{R} \) care satisface egalitatea:
\( f^{2}(x+y)+f^{2}(x-y)=f^{2}(x)+y^{2}f^{2}\left\(\frac{x}{y}\right\)\ ,\ \forall\ x\in \mathbb{R}\ ,\ \forall\ y\in \mathbb{R}^{*}\ . \)
\( f^{2}(x+y)+f^{2}(x-y)=f^{2}(x)+y^{2}f^{2}\left\(\frac{x}{y}\right\)\ ,\ \forall\ x\in \mathbb{R}\ ,\ \forall\ y\in \mathbb{R}^{*}\ . \)