Page 1 of 1

Inegalitate trigonometrica

Posted: Sun May 03, 2009 8:42 am
by Mateescu Constantin
Sa se arate ca in \( \triangle ABC \) are loc inegalitatea:

\( \sin^{3}A+\sin^{3}B+\sin^{3}C< 2. \)

Posted: Sun May 03, 2009 11:43 am
by BogdanCNFB
Din faptul ca \( f(x)=\sin^3 x \) este concava pe \( ( 0,\pi ) \) \( \Rightarrow \sin^3 A+\sin^3 B+sin^3 C\le 3\cdot\sin^3 (\frac{A+B+C}{3})=3\cdot\sin^3 \frac{\pi}{3}=3\cdot \frac{3\sqrt{3}}{8}=\frac{9\sqrt{3}}{8}<2. \)

Posted: Sun May 03, 2009 12:05 pm
by Marius Mainea
BogdanCNFB wrote:Din faptul ca \( f(x)=\sin^3 x \) este concava pe \( ( 0,\pi ) \)
\( f^{\prime\prime}(x)=3\sin x(2\cos^2x-\sin^2x) \), deci f nu e concava pe \( (0,\pi) \).