Page 1 of 1

Inegalitate conditionata de ab+bc+ca=0 (OWN)

Posted: Thu Apr 30, 2009 8:55 pm
by Claudiu Mindrila
Daca \( a,\ b,\ c\in\mathbb{R}^{*} \) astfel incat \( ab+bc+ca=0 \) atunci

\( \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)\ge a^{2}\left(b-1\right)\left(c-1\right)+b^{2}\left(c-1\right)\left(a-1\right)+c^{2}\left(a-1\right)\left(b-1\right). \)

Claudiu Mindrila

Posted: Fri May 01, 2009 2:38 am
by Marius Mainea
Notam \( x=\frac{1}{a} \) si analoagele..
Inegalitatea devine

\( \frac{(xy+yz+zx)^2}{3}\ge3xyz+xy+yz+zx \) cu \( x+y+z=0 \)

Cazul 1) x>0 ,y>0 ,z<0 evident deoarece xy+yz+zx<0

Cazul 2) x>0 , y<0 , z<0.

Inegalitatea este echivalenta cu \( \frac{(y^2+yz+z^2)^2}{3}\ge -3yz(y+z)+yz-(y+z)^2 \) care este adevarata(demonstrati)

Egalitatea ere loc daca y=z=-1 si x=2.
sau \( b=c=-1 \) si \( a=\frac{1}{2} \)