Page 1 of 1

Concursul "Ion Ciolac" problema 2

Posted: Sat Apr 25, 2009 1:25 pm
by BogdanCNFB
a) Demonstrati ca \( \sqrt[n]{n}<\sqrt{2},\forall n\in\mathbb{N},n\ge 5 \).
b) Demonstrati ca \( x_n<n\cdot \log_n{2},\forall n\in\mathbb{N},n\ge 5, \) unde \( x_n={{{{{{\sqrt[n]{n}}^{\sqrt[n]{n}}}^{\sqrt[n]{n}}^{.}}^{.}}^{\sqrt[n]{n}}}} \), numarul radicalilor fiind n.

Posted: Sat Apr 25, 2009 2:12 pm
by Laurentiu Tucaa
a) Relatia este echivalenta cu \( 2^n>n^2 ,\forall n\ge5 \) care este cunoscuta.
b) Aplicand punctul a), avem ca \( x_n<\sqrt{2}^{\sqrt{2}^{\sqrt{2}}=y_n \), etc, n radicali, deci ramane de demostrat ca \( y_n<n\log_n 2 \). Cum \( y_n<2,\forall n \) si cum \( n\log_n 2=n\frac{\ln 2}{\ln n} \) iar \( 2<n\frac{\ln 2}{\ln n},\forall n\ge5 \), tot conform a) rezulta concluzia.