Problema 2, lista scurta 2009
Posted: Sun Apr 19, 2009 8:37 pm
Demonstrati ca pentru orice numar real \( x>0 \) si orice intreg \( n\in \mathbb{N}^* \) are loc inegalitatea :
\( \sum_{k=1}^n\frac{\sqrt{2k-1}}{x+k^2}<\sqrt{\frac{n}{x}}. \)
Dan Nedeianu, Drobeta Turnu Severin
\( \sum_{k=1}^n\frac{\sqrt{2k-1}}{x+k^2}<\sqrt{\frac{n}{x}}. \)
Dan Nedeianu, Drobeta Turnu Severin