Consecinta unei inegalitati
Posted: Fri Apr 17, 2009 9:45 pm
a) Sa se arate ca \( x^2+y^2+1\ge \4sqrt{xy} \) pentru orice x,y pozitive.
b) Determinati numerele pozitive \( a_1,a_2,..,a_{2005} \) stiind ca \( \frac{1}{a_1^2+a_2^2+2}+\frac{1}{a_2^2+a_3^2+2}+...+\frac{1}{a_{2005}^2+a_1^2+2}=\frac{1}{4}\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2005}\) \)
D. Piciu, Concursul Gh.Titeica
b) Determinati numerele pozitive \( a_1,a_2,..,a_{2005} \) stiind ca \( \frac{1}{a_1^2+a_2^2+2}+\frac{1}{a_2^2+a_3^2+2}+...+\frac{1}{a_{2005}^2+a_1^2+2}=\frac{1}{4}\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2005}\) \)
D. Piciu, Concursul Gh.Titeica