Inegalitatea Archbold
Posted: Mon Apr 06, 2009 9:29 pm
Fie \( a_i > 0 \), \( i=\overline{1,n} \) astfel incat
\( \sum_{k=1}^n \frac{1}{a_k}=1 \)
Demonstrati ca \( \forall z_i \in \mathbb{C} \), \( i=\overline{1,n} \)
\( \sum_{k=1}^na_k det{z_k^2} \geq det{ \sum_{k=1}^n z_k}^2 \)
\( \sum_{k=1}^n \frac{1}{a_k}=1 \)
Demonstrati ca \( \forall z_i \in \mathbb{C} \), \( i=\overline{1,n} \)
\( \sum_{k=1}^na_k det{z_k^2} \geq det{ \sum_{k=1}^n z_k}^2 \)