Page 1 of 1
O relatie metrica utila intr-un triunghi isoscel.
Posted: Wed Mar 25, 2009 5:54 am
by Virgil Nicula
Fie un triunghi isoscel \( ABC \) (\( AB=AC \)) inscris in cercul \( w \) si un punct \( P\in w \)
astfel incat dreapta \( BC \) separa \( A \) , \( P \) . Sa se arate ca \( PA^2=b^2+PB\cdot PC\ . \)
Posted: Wed Mar 25, 2009 8:42 am
by Beniamin Bogosel
Daca \( PB=PC \) atunci relatia e echivalenta cu teorema lui Pitagora.
Fara a reduce generalitatea presupunem ca \( PC>PB \). Ducem \( PD \perp PC (D \in PC \) si rotim triunghiul \( ABP \) in jurul lui \( A \) astfel incat \( B \) devine \( C \) si \( P \) devine \( Q \). Din inscriptibilitatea patrulaterului \( ABPC \) rezulta ca \( P,C,Q \) sunt coliniare. Atunci \( AP^2-b^2=PD^2-PC^2=(PD-PC)(PD+PC)=PC \cdot CQ=PC\cdot PB \).
Posted: Wed Mar 25, 2009 4:28 pm
by Virgil Nicula
Extindere. Fie un triunghi \( ABC \) inscris in cercul \( w \) si punctele \( \{P,Q\}\subset w \)
astfel incat \( PQ\ \parallel\ BC \) si dreapta \( BC \) separa \( A \) , \( P \) . Sa se arate ca
\( \left\|\ \begin{array}{c}
AP\cdot AQ=AB\cdot AC+PB\cdot PC\\\\\\\\
PA^2=AB\cdot AC+PB\cdot PC\ \Longleftrightarrow\ AB=AC\ \ \vee\ \ \widehat {PAB}\equiv\widehat {PAC}\end{array}\ \right\|\ . \)