Page 1 of 1

Produs cartezian

Posted: Wed Mar 11, 2009 8:45 pm
by Claudiu Mindrila
Se considera intervalele nevide \( I=\left(a,b\right) \) si \( \: J=\left(c,d\right) \). Sa se arate ca oricare ar fi perechea \( \left(x_{1},y_{1}\right)\in I\times J \) exista o pereche \( \left(x_{2},y_{2}\right)\in I\times J \), \( \left(x_{1},y_{1}\right)\neq\left(x_{2},y_{2}\right) \), cu proprietatea ca \( x_{1}\cdot y_{1}=x_{2}\cdot y_{2} \).

Marilena Stoica, Lavinia Savu, concursul "Gh. Lazar", 2004

Posted: Thu Mar 12, 2009 1:47 am
by Marius Mainea
Se poate arata usor ca problema se reduce la cazul 0<a<b si 0<c<d.(exercitiu)

Fie \( a<x_1<b \) si \( c<y_1<d \)

Cazul 1) \( x_1y_1\le ad \)

atunci pentru \( a<x_2<x_1 \) rezulta \( c<y_1<\frac{x_1y_1}{x_2}<\frac{x_1y_1}{a}\le d \) de unde concluzia.

Cazul 2) \( x_1y_1>ad \) atunci pentru

\( y_1<y_2<d \) avem \( a<\frac{x_1y_1}{d}<\frac{x_1y_1}{y_2}<x_1<b \)de unde concluzia.