Page 1 of 1
Inegalitate
Posted: Thu Mar 05, 2009 7:41 pm
by andy crisan
Sa se arate ca \( (\forall)n\in\mathbb{N^{*}} \) are loc inegalitatea
\( \prod_{k=1}^{n}(1+\frac{1}{k^{3}})<3 \).
Laurentiu Panaitopol OLM Bucuresti 1996
Posted: Thu Mar 05, 2009 8:02 pm
by alex2008
Determinam \( a>0 \) pentru care \( \prod_{k=1}^n(1+\frac{1}{k^3})\le 3-a\ (\bullet)\ ,\ (\forall)n\in \mathbb{N}^* \)
E suficient sa avem \( \Leftrightarrow (3-\frac{a}{n})[1+\frac{1}{(n+1)^3}]\le 4-\frac{a}{n+1} \) si \( 1+\frac{1}{1^3}\le 3-a\Leftrightarrow a(n^2+2n+2)\ge 3n \) si \( a\le 1 \) . Obtinem astfel \( a=1 \) si \( (\bullet ) \) fiind adevarata , este adevarata si cea din enunt .
Posted: Thu Mar 05, 2009 8:06 pm
by mihai++
e ceva ciudat la mijloc pt ca pt \( a=1 \) nu e adevarata inegalitatea.
Am incercat asa aplic si eu ideea ta si imi iese ca acel a trebuie sa fie mai mare decat un polinom care tinde la infinit deci nu merge:(.
Posted: Fri Mar 06, 2009 9:35 am
by mihai++
Faceti inductie la \( p(n): \prod_{k=1}^{n}(1+\frac{1}{k^3})<3-\frac{1}{n} \). Ideea lui Alex a fost foarte buna numai ca el ne-a indus in eroare prin niste greseli de exprimare.
Si ca ceva nou de clasa a 10a daca logaritmezi natural iti da ca \( \prod_{k=1}^{n}(1+\frac{1}{k^3}) < e^{0,95}<3 \),
dar solutia e mult mai complicata si se bazeaza pe:
\( ln(1+x)<x \) si \( \sum_{k=2}^{n}\frac{1}{k^3}<\frac{1}{4} \)