Page 1 of 1
Ecuatie functionala
Posted: Mon Mar 02, 2009 5:29 pm
by BogdanCNFB
Fie \( n\in\mathbb{N},n\ge 2 \) si \( f:\mathbb{R}\rightarrow \mathbb{R} \) cu proprietatea:
\( f(x+y)+f(x-y)=f(nx)+nx,\forall x\in\mathbb{R} \).
Determinati \( f \).
Posted: Mon Mar 02, 2009 8:59 pm
by Adriana Nistor
Daca
\( y=(n-1)x => x+y=nx;\ x-y=(2-n)x. \)
Prin inlocuire:
\( f(nx)+f(x(2-n))=f(nx)+nx => f(x(2-n))=nx. \)
Vom face substitutia
\( x(2-n)=t => x= \frac{t}{2-n} => f(t)=\frac{nt}{2-n} \) (aici am considerat cazul cand
\( n>2 \)).
Revenind la variabila x:
\( f(x)=\frac{nx}{2-n} \).
Considerand celalalt caz (cand
\( n=2 \)) se obtine ca
\( f(0)=nx \), de unde
\( f(0) \) are o infinitate de valori, ceea ce e fals.
Sper sa fie corect.
