Page 1 of 1

Problema cu doua siruri definite recurent

Posted: Mon Mar 02, 2009 2:19 pm
by Al3xx
Fie şirurile \( (a_n)_n \) şi \( (b_n)_n \) definite prin :

\( a_{n+1} = a_n + \frac{1}{2b_n} \)

\( b_{n+1} = b_n + \frac{1}{2a_n} \)

cu \( a_0 , b_0 > 0 \).

Să se demonstreze că \( \max\{a_{2004} , b_{2004}\} > sqrt{2005}. \)

Posted: Mon Mar 02, 2009 3:25 pm
by mihai++
Fie \( c_n=a_nb_n \). Atunci
\( c_n=c_{n-1}+1+\frac{1}{4c_{n-1}} \)
\( c_1=1+c_0+\frac{1}{4c_0}\geq 1+2\sqrt\frac{c_0}{4c_0}=2 \)
\( c_2>c_1+1\geq3 \)
\( \dots \)
\( c_n>n+1 \Rightarrow \max(a_n,b_n)>\sqrt{n+1}. \)