Page 1 of 1

Alte doua inegalitati integrale

Posted: Fri Feb 27, 2009 8:24 pm
by Marius Mainea
1) Fie \( f:[0,1]\rightarrow\mathbb{R} \) o functie derivabila cu derivata continua, astfel incat \( \int_0^1f(x)dx=\int_0^1xf(x)dx=1 \)
Demonstrati ca \( \int_0^1(f^{\prime}(x))^2dx\ge 30 \)

2) Fie \( f,g:[0,1]\rightarrow\mathbb{R} \) doua functii continue, cu proprietatea ca \( \int_0^1f(x)g(x)dx=0 \)

Demonstrati ca

\( \(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge 4\(\int_0^1f(x)dx\)^2\(\int_0^1g(x)dx\)^2 \)

Cezar & Tudorel Lupu

Posted: Wed Mar 04, 2009 11:12 am
by st3fan
\( \int_0^1 x^2(x-1)^2dx = 1/30 \). Apoi aplici CBS pt functia asta si \( \int_0^1(f^{\prime}(x))^2dx \) .

Posted: Wed Mar 04, 2009 2:58 pm
by Marius Dragoi

Posted: Wed Mar 04, 2009 8:22 pm
by st3fan
O solutie pentru a doua problema? :?:

Posted: Wed Mar 04, 2009 9:37 pm
by Bogdan Cebere
Indicatie:Cauti o ecuatie de gradul doi cu \( \Delta =16\(\int_0^1f(x)dx\)^2\(\int_0^1g(x)dx\)^2-4\(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\) \) si arati ca este pozitiva in orice punct.

Posted: Thu Mar 05, 2009 10:20 pm
by Marius Mainea
2) Pentru orice a,b reali din CBS

\( \[\int_0^1(a+f(x))(b+g(x))dx\]^2\le \int_0^1(a+f(x))^2\int_0^1(b+g(x))^2dx \)

si apoi luand b=0 obtinem o functie de gradul II in a

\( a^2\[\int_0^1g^2(x)dx-\(\int_0^1g(x)dx\)^2\]+2a\(\int_0^1f(x)dx\)\(\int_0^1g^2(x)dx\)+\(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge 0 \) pentru orice a real.
Din conditia ca discriminantul sa fie nepozitiv obtinem
\( \(\int_0^1f^2(x)dx\)\(\int_0^1g^2(x)dx\)\ge\(\int_0^1f^2(x)dx\)\(\int_0^1g(x)dx\)^2+\(\int_0^1f(x)dx\)^2\(\int_0^1g^2(x)dx\) \)
si de aici concluzia.


1) Folosim din nou CBS si formula de integrare prin parti si pentru orice a,b reali avem

\( \(\int_0^1(ax^2+bx)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge \(\int_0^1(ax^2+bx)f^{\prime}(x)dx\)^2=\((ax^2+bx)f(x)|_0^1-\int_0^1(2ax+b)f(x)dx\)^2=\((a+b)f(1)-2a-b\)^2 \)

Acum urmeza particularizarea parametrilor a si b astfel incat sa obtinem o forma cat mai simpla, adica a+b=0 mai precis a=1 , b=-1. Obtinem

\( \(\int_0^1(x^2-x)^2dx\)\(\int_0^1(f^{\prime}(x))^2dx\)\ge 1 \) de unde

\( \int_0^1(f^{\prime}(x))^2dx\ge \frac{1}{\int_0^1(x^2-x)^2dx}=\frac{1}{30} \)