Page 1 of 1
Trei numere complexe cu modulul sumei egal cu 1 sau 2
Posted: Fri Feb 27, 2009 9:21 am
by mihai++
Fie \( z_1,z_2,z_3\in\mathbb{C},\ |z_1|=|z_2|=|z_3|=1,\ z_1^3+z_2^3+z_3^3+z_1z_2z_3=0 \). Demonstrati ca \( |z_1+z_2+z_3|\in\{1,2\} \).
Daniel Jinga, OLM Arges
Posted: Fri Feb 27, 2009 11:38 am
by andy crisan
Mie din calcule imi iese doar ca \( |z_{1}+z_{2}+z_{3}|=2 \). Acum postez solutia mea si astept sa vad de ce nu-mi da si 1.
Conjugam relatia din enunt si prin aducere la acelasi numitor obtinem \( z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}+z_{1}^{2}z_{2}^{2}z_{3}^{2}=0\Leftrightarrow z_{1}^{3}z_{2}^{3}+z_{2}^{3}z_{3}^{3}+z_{3}^{3}z_{1}^{3}=-z_{1}^{2}z_{2}^{2}z_{3}^{2}\ (1) \).
Din relatia din eununt obtinem \( z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=-z_{1}z_{2}z_{3} \). Ridicam la patrat aceasta ultima relatie si folosind \( (1) \) obtinem ca \( z_{1}^{6}+z_{2}^{6}+z_{3}^{6}=3z_{1}^{2}z_{2}^{2}z_{3}^{2}\Leftrightarrow (z_{1}^{2}+z_{2}^{2}+z_{3}^{2})(z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2})=0 \)\( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) sau \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \).
Cazul 1. Daca \( z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \) \( \Rightarrow \) (fiind o problema cunoscuta) \( |z_{1}+z_{2}+z_{3}|=2 \).
Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe \( \Rightarrow z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 \), acest caz reducandu-se la cazul precedent \( \Rightarrow |z_{1}+z_{2}+z_{3}|=2 \)
Posted: Fri Feb 27, 2009 5:55 pm
by Sorin Ulmeanu
INCEARCA SA AJUNGI LA UN PRODUS EGAL CU ZERO, DE TIPUL (Z1 LA CUB +Z2 LA CUB)(Z2 LA CUB+Z3 LA CUB)(Z3 LA CUB + Z1 LA CUB)=0
DACA AJUNGI AICI ANUNTA-MA!
Posted: Fri Feb 27, 2009 7:31 pm
by mihai++
Fie \( s=z_1+z_2+z_3,\ q=z_1z_2+z_2z_3+z_3z_1,\ p=z_1z_2z_3 \).
Din relatia initiala si conjugata ei obtinem :
\( s^3-3qs=-4p \)
\( \frac{q^3}{p}-3qs=-4p \)
de unde avem ca \( s^3=\frac{q^3}{p}\Rightarrow \frac{s^3}{p}=|s|^3 \) caci \( |s|^2=s\overline{s}=\frac{sq}{p} \) si acum daca impartim prima relatie la \( p \):
\( |s|^3-3|s|^2+4=0\Leftrightarrow (|s|+1)(|s|-2)^2=0 \) de unde \( |s|=2.
\)
Am gresit acolo cand am scos o radacina patratica:
\( \frac{s^3}{p}=\pm |s|^3 \) si rezolvand ecuatia \( -|s|^3-3|s|^2+4=0\Leftrightarrow (|s|-1)(|s|+2)^2=0\Rightarrow |s|=1. \)
Posted: Fri Feb 27, 2009 8:43 pm
by bae
andy crisan wrote:Cazul 2. Daca \( z_{1}^{4}+z_{2}^{4}+z_{3}^{4}-z_{1}^{2}z_{2}^{2}-z_{2}^{2}z_{3}^{2}-z_{3}^{2}z_{1}^{2}=0 \), atunci \( z_{1}^{2},z_{2}^{2},z_{3}^{2} \) sunt afixele varfurilor unui triunghi echilateral cu centrul in originea sistemului de axe
Asta e doar partial adevarat! Mai avem inca o posibilitate:
\( z_1^2=z_2^2=z_3^2 \).
Posted: Fri Feb 27, 2009 8:53 pm
by andy crisan
Aveti dreptate: analizand acest ultim caz obtinem ca doua dintre numere sunt opuse (se arata usor ca toate nu pot fi egale) \( \Rightarrow \) \( |z_{1}+z_{2}+z_{3}|=|z_{1}|=1 \).
Re: Trei numere complexe cu modulul sumei egal cu 1 sau 2
Posted: Fri Feb 27, 2009 11:22 pm
by Virgil Nicula
EN18. \( \ \ \ \left\{\ z_1\ ,\ z_2\ ,\ z_3\ \right\}\ \subset\ \mathbb{C}\ \ \wedge\ \ \left\|\ \begin{array}{c}
|z_1|=|z_2|=|z_3|=1\\\\\\
z_1^3+z_2^3+z_3^3+z_1z_2z_3=0\end{array}\ \right\|\ \Longrightarrow\ |z_1+z_2+z_3|\ \in\ \{\ 1\ ,\ 2\ \}\ . \)
PR18. \( \ \ \ \frac {z_1}{u}=\frac {z_2}{v}=\frac {z_3}{1}=\frac {z_1+z_2+z_3}{u+v+1}\ \Longrightarrow\ \left\|\ \begin{array}{c}
|u|=|v|=1\\\\\\\\
u^3+v^3+1+uv=0\ (1)\\\\\\\\
\left|z_1+z_2+z_3\right|=|u+v+1|\end{array}\ \right\|\ . \)
\( (1)\ \ \wedge\ \ \overline u=\frac 1u\ \ \wedge\ \ \overline v=\frac 1v\ \Longrightarrow\ u^3+v^3+u^3v^3+u^2v^2=0\ (2)\ . \)
\( (1)\ \ \wedge\ \ (2)\ \Longrightarrow\ 1+uv=u^2v^2(1+uv)=-\left(u^3+v^3\right)\ \Longrightarrow \)
\( (1+uv)^2(1-uv)=0\ \ \wedge\ \ \left(u^3+v^3\right)+(1+uv)=0\ . \)
\( \odot\ \ uv=1\ \wedge\ \left(u^3+v^3\right)+2=0\ \Longrightarrow\ (u+v)^3-3(u+v)+2=0\ \Longrightarrow\ u+v=1\ \vee\ u+v=-2\ \Longrightarrow \)
\( u+v+1\in\{2,-1\}\ \Longrightarrow\ |u+v+1|\in \{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)
\( \odot\ \ uv=-1\ \wedge\ u^3+v^3=0\ \Longrightarrow\ (u+v)^3+3(u+v)=0\ \Longrightarrow\ u+v\in\left\{0,\pm i\sqrt 3\right\}\ \Longrightarrow \)
\( u+v+1\in \left\{1,1\pm i\sqrt 3\right\}\ \Longrightarrow\ |u+v+1|\in\{1,2\}\ \Longrightarrow\ \left|z_1+z_2+z_3\right|\in\{1,2\}\ . \)
\( \left\|\ \begin{array}{c}
|u|=|v|=1\\\\\\
u^3+v^3+1+uv=0\end{array}\ \right\|\ \Longrightarrow\ u+v\ \in\ \left\{\ -2\ ,\ 1\ ,\ 0\ ,\ \pm i\sqrt 3\ \right\}\ . \)
\( \left\{\ \begin{array}{c}
u+v=1\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-2\\\\\\
uv=1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=0\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=i\sqrt 3\\\\\\
uv=-1\end{array}\ \ \vee\ \ \left\{\ \begin{array}{c}
u+v=-i\sqrt 3\\\\\\
uv=-1\end{array}\ \ . \)
Posted: Sat Feb 28, 2009 10:55 am
by Virgil Nicula
OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit.
Si in matematica se poate intampla sa gresesti, insa astfel apare o noua problema
- descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei.
Cu alte cuvinte, greseala in matematica uneori este benefica. Insa aici in noua problema
aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.