Page 1 of 1

Doua inegalitati cu "ceva" probleme ...

Posted: Thu Feb 26, 2009 10:52 am
by Virgil Nicula
Va propun doua inegalitati similare cu "ceva" probleme :

\( \left\|\ \begin{array}{c}
a>0\ ,\ b>0\ ,\ c>0\\\\\\\\
a+b+c=1\end{array}\ \right\|\ \Longrightarrow\ \ \left\{\ \begin{array}{ccc}
1^{\circ}. & & & 4\cdot\left(\frac 1a+\frac 1b+\frac 1c\right)-\frac {1}{abc}\ \le\ 9\ .\\\\\\\\
2^{\circ}. & & & 27\cdot\left(\frac 1a+\frac 1b+\frac 1c\right)-\frac {7}{abc}\ \le\ 54\ \mathrm{(OIM\ -\ 84)}\ .\end{array} \)

Posted: Thu Feb 26, 2009 10:17 pm
by Marius Mainea
1) Omogenizand se obtine:

\( 4\sum {ab}\sum {a}-(a+b+c)^3\le 9abc \) care este echivalenta cu inegalitatea lui Schur.

2) Analog cu 1) , omogenizam si reducem la

\( 6\sum {ab(a+b)}\le 7(a^3+b^3+c^3)+15abc \) care este evidenta din inegalitatea lui Schur si

\( 2\sum {a^3}\ge \sum {ab(a+b)} \)