Page 1 of 1

Integrala ca suma infinita

Posted: Thu Feb 19, 2009 7:10 pm
by Ciprian Oprisa
Sa se arate ca:
\( \int\limits_0^1 \frac{t^{a-1}}{1+t^b}dt=\frac{1}{a}-\frac{1}{a+b}+\frac{1}{a+2b}-\frac{1}{a+3b}+\ldots \)

Posted: Fri Feb 20, 2009 1:10 am
by Beniamin Bogosel
\( \frac{t^{a-1}}{1+t^b}=t^{a-1}\sum_{k\geq 0}(-1)^kt^{kb}=\sum_{k\geq 0}(-1)^kt^{kb+a-1} \)

Daca notam \( f_k(t)=(-1)^kt^{kb+a-1} \), atunci \( \int_0^1 f_k(t)dx=(-1)^k\frac{1}{a+kb} \). Notam cu \( f \) seria acestor functii, care este egala cu functia initiala.

Daca notam \( g_n=\sum^nf_k \) atunci \( g_{2n}\to f \) crescator, si din teorema convergentei monoton crescatoare avem \( \int_0^1g_{2n}dx \to \int_0^1 f dx \).

Deasemenea \( g_{2n+1} \to f \) descrescator, si \( \int_0^1 g_1 <\infty \) si astfel din teorema convergentei descrescatoare avem \( \int_0^1 f g_{2n+1}dx\to \int_0^1 fdx \).

Deci \( \int_0^1 g_n dx \to \int_0^1 f dx \), adica ceea ce doream sa demonstram pentru ca integrala lui \( g_n \) este suma partiala de ordinul \( n \) al seriei. :)