Page 1 of 1

OLM Dambovita 2009, problema 2

Posted: Sat Feb 14, 2009 3:33 pm
by Claudiu Mindrila
Demonstrati ca daca exista \( n \in \mathbb{N}^* \) astfel incat \( 1+x+x^{2}+\ldots+x^{2n}>\frac{n+1}{2n+1} \), atunci \( 1+x+x^{2}+\ldots+x^{2n+2}>\frac{n+2}{2n+3} \).

Posted: Sat Feb 14, 2009 11:24 pm
by Marius Mainea
Problema 3 de aici

rezolvare

Posted: Wed Mar 04, 2009 5:58 pm
by BurnerD1
Cunoastem faptul ca \( 1 + x + x^{2} +\ldots + ... +x^{2n} > \frac{n+1}{2n+1} \)

Aplicam principiul inductiei, astfel ca \( n \Rightarrow n+1 \) si obtinem: \( 1 + x + x^{2} +\ldots + ... +x^{2(n+1)} > \frac{(n+1)+1}{2(n+1)+1} \), adica \( 1 + x + x^{2} +\ldots + ... +x^{2n+2} > \frac{n+2}{2n+3} \)

Re: rezolvare

Posted: Wed Mar 04, 2009 6:30 pm
by DrAGos Calinescu
BurnerD1 wrote: Aplicam principiul inductiei, astfel ca \( n \Rightarrow n+1 \) si obtinem: \( 1 + x + x^{2} +\ldots + ... +x^{2(n+1)} > \frac{(n+1)+1}{2(n+1)+1} \), adica \( 1 + x + x^{2} +\ldots + ... +x^{2n+2} > \frac{n+2}{2n+3} \)
Nu e corecta abordarea, nu toate inegalitatile sunt inductive.
Avem \( 1+x+...+x^{2n+2}=1+x+x^2(1+x+...+x^{2n}<1+x+x^2\cdot\frac{n+1}{2n+1} \)
Demonstram ca este mai mare ca \( \frac{n+2}{2n+3}\Longleftrightarrow x^2\cdot\frac{n+1}{2n+1}+x+(1-\frac{n+2}{2n+3})>0 \)
\( \Delta =1-4\frac{n+1}{2n+1}(1-\frac{n+2}{2n+3})=1-4\frac{n+1}{2n+1}\cdot\frac{n+1}{2n+3}=1-4\frac{n^2+2n+1}{4n^2+8n+3}=1-\frac{4n^2+8n+4}{4n^2+8n+3}<0 \)
Cum \( \frac{n+1}{2n+1}>0 \) rezulta inegalitatea cautata.

Posted: Wed Mar 04, 2009 7:08 pm
by BurnerD1
cum aceasta este, de ce sa nu o abordez prin metoda cea mai simpla si corecta si sa ma complic cu asa multe calcule?

Posted: Wed Mar 04, 2009 7:11 pm
by DrAGos Calinescu
Si de unde stii ca e inductiva daca nu demonstrezi?

Posted: Wed Mar 04, 2009 7:15 pm
by BurnerD1
iar tu in toata chestia aia ai incercat sa demonstrezi ca e inductibila ?