OLM Dambovita 2009, problema 1
Posted: Sat Feb 14, 2009 3:32 pm
a) Daca \( x,y,z \in \mathbb{R} \) si \( a,b,c \in (0, \infty) \) demonstrati ca \( \frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\ge\frac{\left(x+y+z\right)^{2}}{a+b+c} \).
b) Folosind eventual rezultatul de la a) demonstrati ca daca \( a,b,c \in (0, \infty) \), astfel incat \( a^2+b^2+c^2=1 \) atunci \( \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\left(a+b+c\right)^{2} \).
b) Folosind eventual rezultatul de la a) demonstrati ca daca \( a,b,c \in (0, \infty) \), astfel incat \( a^2+b^2+c^2=1 \) atunci \( \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\left(a+b+c\right)^{2} \).