Demonstrati ca daca \( x,y,z>0 \) astfel incat \( xyz=x+y+z+2, \) atunci are loc inegalitatea:
\( 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})\leq x+y+z+6. \)
Inegalitate (cunoscuta?!)
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Inegalitate (cunoscuta?!)
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Inegalitatea este echivalenta cu :
\( \sqrt {x} + \sqrt {y} + \sqrt {z} \le \sqrt {2(x + y + z + 3)} \)
Deoarece \( xyz = x + y + z + 2 \) , facem substitutia \( x = \frac {b + c}{a}\ ,\ y = \frac {c + a}{b}\ ,\ z = \frac {a + b}{c} \).
Inegalitatea devine :
\( \sum \ \sqrt {\frac {b + c}{a}} \le \sqrt {2(\sum \ a)(\sum \ \frac {1}{a})} \) , care este adevarata din Cauchy-Schwartz .
\( \sqrt {x} + \sqrt {y} + \sqrt {z} \le \sqrt {2(x + y + z + 3)} \)
Deoarece \( xyz = x + y + z + 2 \) , facem substitutia \( x = \frac {b + c}{a}\ ,\ y = \frac {c + a}{b}\ ,\ z = \frac {a + b}{c} \).
Inegalitatea devine :
\( \sum \ \sqrt {\frac {b + c}{a}} \le \sqrt {2(\sum \ a)(\sum \ \frac {1}{a})} \) , care este adevarata din Cauchy-Schwartz .
. A snake that slithers on the ground can only dream of flying through the air.