Inegalitate (cunoscuta?!)

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Inegalitate (cunoscuta?!)

Post by maxim bogdan »

Demonstrati ca daca \( x,y,z>0 \) astfel incat \( xyz=x+y+z+2, \) atunci are loc inegalitatea:

\( 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})\leq x+y+z+6. \)
Feuerbach
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( x=\frac{b+c}{a} \) si analoagele si inegalitatea devine:

\( 2(\sum_{cyc} \sqrt{(a^2c+abc)(a^2b+abc)})\le \sum_{cyc}ab(a+b)+6abc \) care este evidenta din AM-GM
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Inegalitatea este echivalenta cu :

\( \sqrt {x} + \sqrt {y} + \sqrt {z} \le \sqrt {2(x + y + z + 3)} \)

Deoarece \( xyz = x + y + z + 2 \) , facem substitutia \( x = \frac {b + c}{a}\ ,\ y = \frac {c + a}{b}\ ,\ z = \frac {a + b}{c} \).

Inegalitatea devine :

\( \sum \ \sqrt {\frac {b + c}{a}} \le \sqrt {2(\sum \ a)(\sum \ \frac {1}{a})} \) , care este adevarata din Cauchy-Schwartz .
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Inegalitati”