Page 1 of 1

Sistem neomogen

Posted: Wed Feb 04, 2009 10:59 pm
by Marius Mainea
Sa se determine \( a,b,c\in (0,\infty) \) stiind ca :

\( \left{\begin{array}{cc}a^7=9b^4-8c\\b^7=9c^4-8a\\c^7=9a^4-8b\end{array} \)

G. Tica G.M.

Posted: Thu Feb 12, 2009 8:52 pm
by Claudiu Mindrila
Deoarece sistemul este simetric in \( a,b,c \) putem presupune ca \( a=\max \{a,b,c} \). Deoarece \( 8a=9c^{4}-b^{7} \) si \( 8b=9a^{4}-c^{7} \) avem ca:

\( a\ge b\Longrightarrow9c^{4}-b^{7}\ge9a^{4}-c^{7}(1) \)

Dar in baza presupunerii facute avem:


\( 9c^{4}\le9a^{4},-b^{7}\le-c^{7}\Longrightarrow9c^{4}-b^{7}\le9a^{4}-c^{7}(2) \).

Din \( (1) \) si \( (2) \) obtinem ca \( 9c^{4}-b^{7}=9a^{4}-c^{7}\Longrightarrow a=b \).

Problema se reduce acum la rezolvarea urmatorului sistem:

\( \begin{cases}
a^{7}=9b^{4}-8c\\
b^{7}=9c^{4}-8a\end{cases}\Longleftrightarrow\begin{cases}
a^{7}=9a^{4}-8c\\
a^{7}=9c^{4}-8a\end{cases}\Longleftrightarrow9a^{4}-8c=9c^{4}-8a \)


Sa consideram functia \( f\left(x\right)=9x^{4}+8x \). Deaorece \( f(x) \) este strict crescatoare. Deducem ca \( f(x) \) este injectiva, deci pentru orice \( x \neq y \) avem ca \( f(x) \neq f(y). \)

Revenind la problema. Daca \( a\neq c \) atunci \( f(a) \neq f(c) \), deci \( 9a^{4}+8a\neq9c^{4}+8c \), situatie care evident nu convine. Obtinem deci ca \( a=b=c \).

Mai ramane de rezolvat ecuatia \( a^{7}-9a^{4}+8a=0\Longleftrightarrow a^{4}\left(a^{3}-1\right)-8a\left(a^{3}-1\right)=0\Longleftrightarrow \left(a^{3}-1\right)\left(a^{3}-8\right)=0 \) care are solutiile \( a\in\left\{ 1,2\right\} \).

Solutiile problemei sunt deci \( a=b=c=1,a=b=c=2 \).