Page 1 of 1

Inegalitate conditionata cu produsul 1

Posted: Sun Feb 01, 2009 9:41 pm
by Claudiu Mindrila
Fie \( a,b,c \) numere reale strict pozitive astfel incat \( abc=1 \). Demonstrati ca \( \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \right) ^2 \ge 3(a+b+c)+2(\sqrt{a}+\sqrt{b}+\sqrt{c})+1. \)

Posted: Sun Feb 01, 2009 10:13 pm
by Marius Mainea
Ridicand la patrat si reducand termenii asemenea obtinem

\( \sum_{cyc}{a^2b^2}+2\sum_{cyc}{ab}\ge \sum_{cyc}a+2\sum_{cyc}{\sqrt{a}} \)

care este evidenta.