Inegalitate conditionata cu produsul 1
Posted: Sun Feb 01, 2009 9:41 pm
Fie \( a,b,c \) numere reale strict pozitive astfel incat \( abc=1 \). Demonstrati ca \( \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \right) ^2 \ge 3(a+b+c)+2(\sqrt{a}+\sqrt{b}+\sqrt{c})+1. \)