Page 1 of 1

Inegalitate conditionata cu a+b+c=abc

Posted: Tue Jan 27, 2009 7:55 pm
by Claudiu Mindrila
Fie numerele reale \( a,b,c \) astfel incat \( a+b+c=abc \).
a) Daca \( a,b,c\in\mathbb{R}_{+}^{*} \), detemrinati valoarea minima a sumei \( a+b+c \),
b) Care sunt tripletele de numere intregi \( (a,b,c) \) cu \( a,b,c \) nenule care verifica egalitatea data?

Adrian Ghioca, lista scurta, 2005

Posted: Mon Feb 02, 2009 12:18 am
by Marius Mainea
a) \( 3\sqrt{3} \)