Page 1 of 1
Inegalitate conditionata
Posted: Mon Jan 26, 2009 7:56 pm
by alex2008
\( a,b,c>0 \) si \( a^2+b^2+c^2=3 \) . Aratati ca \( \sum_{cyc}\frac{a^2+b^2}{a+b}\ge 3. \)
Re: Inegalitate conditionata
Posted: Mon Jan 26, 2009 10:26 pm
by Virgil Nicula
Inegalitatea ta este mai "tare" decat
\( a+b+c\ \le\ \sum\ \frac {b^2+c^2}{b+c} \) (asta este simplu de dovedit !).
Eu zic sa scriem omogen inegalitatea propusa, "nevopsita". Arata mai frumos asa (o parere personala !):
Daca numerele \( a \) , \( b \) , \( c \) sunt pozitive, atunci \( a+b+c\ \le\ \overline {\underline {\left\|\ \sqrt {3\left(a^2+b^2+c^2\right)}\ \le\ \sum\ \frac {b^2+c^2}{b+c}\ \right\|}}\ . \)
Re: Inegalitate conditionata
Posted: Tue Jan 27, 2009 7:40 pm
by Marius Mainea
Daca numerele \( a \) , \( b \) , \( c \) sunt pozitive, atunci \( a+b+c\ \le\ \overline {\underline {\left\|\ \sqrt {3\left(a^2+b^2+c^2\right)}\ \le\ \sum\ \frac {b^2+c^2}{b+c}\ \right\|}}\ . \)
A doua inegalitate este echivalenta cu:
\( \sqrt{3(a^2+b^2+c^2)}\le \sum{\frac{(b+c)^2+(b-c)^2}{2(b+c)}} \) sau
\( \sqrt{3(a^2+b^2+c^2)}-a-b-c\le\sum{\frac{(b-c)^2}{2(b+c)}} \)
sau
\( \frac{(a-b)^2+(b-c)^2+(c-a)^2}{\sqrt{3(a^2+b^2+c^2)}+a+b+c}\le\sum{\frac{(b-c)^2}{2(b+c)}} \)
Intrucat
\( \sqrt{3(a^2+b^2+c^2)}\ge a+b+c \) este suficient sa aratam ca
\( \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2(a+b+c)}\le\sum{\frac{(b-c)^2}{2(b+c)}} \)
ceea ce este echivalent cu
\( 0\le\sum{\frac{a}{b+c}(b-c)^2} \) care este adevarat.
Posted: Thu Jan 29, 2009 12:31 pm
by Virgil Nicula
Iata o frumoasa si foarte tare extindere a inegalitatii propuse de tine. Curand iti voi oferi si demonstratia acestei generalizari.
\( \underline {\overline {\left\|\ \frac {b^2 + c^2}{b + c} + \frac {c^2 + a^2}{c + a} + \frac {a^2 + b^2}{a + b}\ \ge\ \sqrt {3\left(a^2 + b^2 + c^2\right)} + \frac {1}{2(a + b + c)^2}\cdot \left[a(b - c)^2 + b(c - a)^2 + c(a - b)^2\right]\ \right\|}}\ . \)
Urmareste
aici si
aici interesul manifestat de elevii/studentii "planetei" la aparitia acestei mici bijuterii.
Posted: Fri May 22, 2009 7:18 pm
by alex2008